Chem. Ber. 118, 5016-5017 (1985)

Darstellung von cis-Dichloro[tellurobis(di-tert-butyl-phosphan)]platin(II)

Ralph Hensel und Wolf-Walther du Mont*

Fachbereich Chemie der Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-2900 Oldenburg

Eingegangen am 18. April 1985

Preparation of cis-Dichloro[tellurobis(di-tert-butylphosphane)]platinum(II)

The title complex 2 is obtained in 50-60% yield from heterogeneous reactions between tellurobis(di-tert-butylphosphane) (1) and bis(benzonitrile)dichloroplatinum(II) in methylene chloride or platinum dichloride in toluene suspension. NMR and MS data are consistent with a chelate-type $Cl_2Pt(tBu_2P)_2Te$ structure of the new complex.

Tellurobis(di-tert-butylphosphan) (1), die bislang einzige beständige Tellurverbindung, die nur PR_2 -Substituenten an Tellur gebunden enthält 1,2), bildet mit Tetracarbonylmetall(VI A)-Akzeptoren Vierringchelatkomplexe 3,4). Tellur ist dabei in die Koordinationssphäre der Zentralatome nicht mit einbezogen, und auch Versuche zur Synthese von 16-Elektronenkomplexen mit 1 wie $[W(CO)_3(tBu_2P)_2Te]$ schlugen bisher fehl 4). Da von den Schwermetallen der VIII. Nebengruppe wie Ru, Pd, Pt eine größere Anzahl beständiger Komplexe mit $M \leftarrow TeR_2$ -Koordination bekannt ist 5), verwenden wir nun derartige Akzeptoren, die zur Ausbildung von 16-Elektronen-Komplexen neigen, aber auch die Aufweitung der Koordinationssphäre durch Einbeziehungen von Metall(VIII A)-Tellur-Wechselwirkungen gestatten könnten.

Über die Synthese des ersten 16e-Komplexes mit einem Tellurobisphosphan-Liganden wird im folgenden berichtet.

cis-Dichloro[tellurobis(di-tert-butylphosphan)]platin(II) (2) entsteht als Hauptprodukt, wenn man Tellurobis(di-tert-butylphosphan) (1) zusammen mit der äquimolaren Menge Bis(benzonitril)dichloroplatin(II) in Dichlormethan oder mit festem Platindichlorid in Toluol etwa 1 Tag bei Raumtemperatur umsetzt.

$$(C_6H_5CN)_2$$
 PtCl₂ + $(tBu_2P)_2$ Te tBu Cl Pt Te tBu PtCl₂ + tBu tBu tBu tBu

2 ist gut löslich in Dichlormethan und Chloroform und nur wenig löslich in Toluol oder Pentan. Nebenprodukte der Synthese lassen sich durch Waschen mit Petrolether von 2 abtrennen, das in reiner Form in gelben Kristallen erhalten wird. Hauptfragmentierungen des mit korrekter Isotopenverteilung auftretenden Molekül-Ions von 2 im Massenspektrum sind die Abspaltung von Isobuten (β-Eliminierung am Phosphor) und darauffolgend Ab-

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1985 0009 – 2940/85/1212 – 5016 \$ 02.50/0

spaltung von HCl. Das PtP_2 Te-Ringgerüst fragmentiert erst nach Verlust aller Alkyl- und Chlorosubstituenten. Das ${}^{31}P$ -NMR-Signal von 2 zeigt charakteristische Satelliten wegen $J({}^{195}Pt^{31}P)=3282$ und $J({}^{125}Te^{31}P)=325$ Hz. Die Verkleinerung von J(TeP) gegenüber dem Liganden 1 ist für Tellurophosphan-Chelatkomplexe offenbar charakteristisch⁴⁾, die bei 2 besonders ausgeprägte ${}^{31}P$ -Hochfeld-Koordinationsverschiebung gegenüber 1 kann nicht als Hinweis auf eine besondere Platin-Tellur-Wechselwirkung gewertet werden⁴⁾. Ob sich 2 auch in seiner Reaktivität wie ein typischer "cis-Platin"-Komplex verhält, wird zur Zeit untersucht.

Wir danken Herrn Dr. B. Meyer und Frau M. Rundshagen sowie Herrn W. Schwarting für die FT-NMR- bzw. Massen-Spektren, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Förderung.

Experimenteller Teil

Die Versuche wurden unter Ausschluß von Luft und Feuchtigkeit durchgeführt. – ¹H-NMR: Varian EM 360, δ-Werte gegen TMS. – ³¹P-NMR: Bruker WP 80, ¹H-Rauschentkopplung, δ-Werte gegen 85proz. H₃PO₄. – MS: MAT 212, EI-Quelle. – IR: Perkin-Elmer 1430 in Nujol zwischen CsI-Platten.

Dichloro [tellurobis (di-tert-butylphosphan)] platin (II) (2)

a) 2.34 g (5.1 mmol) Bis(benzonitril)dichloroplatin(II) (Fa. Ventron, Karlsruhe) und 2.12 g (5.1 mmol) Tellurobis(di-tert-butylphosphan) (1)¹⁾ werden in 25 ml Dichlormethan suspendiert und 20 h bei Raumtemperatur gerührt (weitgehender Lichtausschluß). Danach werden Lösungsmittel und Benzonitril unter vermindertem Druck (bis 50°C/0.1 hPa) entfernt. Der Rückstand wird 3 mal mit je 20 ml Petrolether (40–60) gewaschen und dann aus Dichlormethan/Pentan unter Kühlung zur Kristallisation gebracht, Ausb. 2.29 g (66%).

b) Entsprechend erhält man aus 0.50 g (1.9 mmol) Platindichlorid und 0.78 g 1 nach 20 h Rühren in 20 ml Toluol durch Aufarbeitung wie bei a) 0.63 g (49%) reines 2.

2 ist gut löslich in CH₂Cl₂ und CHCl₃, wenig löslich in Pentan, Petrolether und Toluol. Gelbe Kristalle vom Schmp. 269 °C (Zers. ab etwa 260 °C). — MS (220 °C, 70 eV): m/z = 684 (35%, M⁺), 628 (4, M⁺ — C₄H₈), 592 (19, M⁺ — C₄H₈, —HCl), 536 (94, M⁺ — 2C₄H₈, —HCl), 500 (25, M⁺ — 2C₄H₈, —2HCl), 480 (42, M⁺ — 3C₄H₈, —HCl), 444 (27, M⁺ — 3C₄H₈, —2HCl), 388 (12, PtP₂H₂Te⁺), 386 (15, PtP₂Te⁺), 357 (3, PtPH₂Te⁺), 355 (5, PtPTe⁺), Basispeak 57 (C₄H₉). — ¹H-NMR: $\delta = 1.5$ (Pseudo-d; $N(^{31}P^{1}H) = 16$ Hz). — ³¹P-NMR: $\delta = -29.7$ ($J(^{195}Pt^{31}P) = \pm 3282$; $J(^{125}Te^{31}P) \pm 325$ Hz). — IR: 280, 300 cm⁻¹ [ν (Pt—Cl)].

 $C_{16}H_{36}Cl_2P_2PtTe$ (684.0) Ber. C 28.10 H 5.31 Gef. C 28.07 H 5.28 Molmasse 684 (MS, 220 °C, 70 eV, ber. 685 mit ¹⁹⁵Pt, ¹³⁰Te, ³⁵Cl).

Das Isotopenmuster stimmt mit Berechnung überein.

[84/85]

¹⁾ W.-W. du Mont, Angew. Chem. **92**, 562 (1980); Angew. Chem., Int. Ed. Engl. **19**, 554 (1980).

²⁾ W.-W. du Mont, T. Severengiz und B. Meyer, Angew. Chem. **95**, 1025 (1983); Angew. Chem., Int. Ed. Engl. **22**, 983 (1983).

³⁾ W.-W. du Mont, R. Hensel und T. Severengiz, Phosphorus Sulfur 18, 73 (1983).

⁴⁾ R. Hensel, W.-W. du Mont, R. Boese, D. Wewers und L. Weber, Chem. Ber. 118, 1580 (1985).

⁵⁾ H. J. Gysling, Coord. Chem. Rev. 42, 133 (1982).